Exercice 1

Étudier les variations de chacune des fonctions suivantes sur l'intervalle I, ainsi que leurs limites aux bornes de leurs ensembles de définition.

1) $f(x) = \cos x - x$ définie sur $I = \mathbb{R}$

- 4) $k(x) = \ln(\sin x)$ définie sur $I =]0, \pi[$.
- 2) $g(x) = -3\sin(x/2)$ définie sur $I = [0, 2\pi]$
- 5) $m(x) = x \frac{x^3}{6} \sin x$ définie sur $I = \mathbb{R}_+$

- 3) $h(x) = \cos^2(2x)$ définie sur $I = [0, \pi]$
- *
 Exercice 2

Dans chaque cas, résoudre dans I l'équation ou l'inéquation :

1) $\cos x = -\frac{1}{2}$, $I = [0, 2\pi]$

4) $\sin(3x) = \frac{\sqrt{3}}{2}$, $I = [-\pi, \pi]$

2) $\tan x = -1$, $I =]-\pi/2, \pi/2[$

5) $\sin(2x) > \frac{\sqrt{2}}{2}$, $I = [-\pi, 3\pi]$

3) $\tan x = 0$, $I =]5\pi/2, 7\pi/2[$

 $\star \qquad 6) \; \cos x < \frac{\sqrt{2}}{2}, \quad I = [-3\pi, \frac{\pi}{6}]$

Exercice 3 -

- 1) Montrer que pour tout réel x on a : $\cos x + \sin x = \sqrt{2}\cos(x \frac{\pi}{4})$
- 2) En déduire les solutions de $\cos 2x + \sin 2x \ge -1$ sur $\mathbb R$

Exercice 4

Résoudre dans \mathbb{R} les équations suivantes :

 $1) \cos(2x) = \cos x$

 $3) \sin(2x) = \cos x$

 $2) \cos(2x) = \sin x$

 $4) \cos(3x) = \cos x$

 $\star \star$ Exercice 5

Résoudre l'équation $\cos x + \sin x = -\frac{\sqrt{6}}{2}$ dans \mathbb{R} .

* * Exercice 6

Montrer que pour tout réel x, $2\cos(2x) - 4\cos x + 3 \ge 0$ et déterminer les cas d'égalité.

* * * Exercice 7

1) Montrer que pour tout entier naturel n et tout réel x on a :

$$\sin(2^{n+2}x) = 2\sin(2^{n+1}x) - 4\sin(2^{n+1}x)\sin(2^nx)^2$$

2) Soit (u_n) la suite définie pour tout entier naturel n par :

$$u_{n+2} = 2u_{n+1} - 4u_{n+1} \times (u_n)^2$$
; $u_0 = \frac{\sqrt{2}}{2}$; $u_1 = 1$

Montrer que (u_n) est une suite stationnaire (i.e. à partir d'un certain rang N, on a $u_{n+1} = u_n$). Quelle est alors la valeur limite de la suite (u_n) ?

On note D l'ensemble des réels qui ne sont pas des entiers relatifs, soit $D = \mathbb{R} \setminus \mathbb{Z}$.

Pour tout $x \in D$, on note $\cot(x) = \pi \frac{\cos(\pi x)}{\sin(\pi x)}$

- 1) Vérifier que cot est définie et continue sur D, qu'elle est impaire et périodique de période 1.
- 2) Étudier les variations de cot sur $]-1,0[\cup]0,1[$. On précisera les limites en -1, en 0 et en 1.
- 3) Montrer que $\lim_{x\to 0} x(\cot(x)) = 1$.
- 4) Démontrer que pour tout $x \in D$ on a $\frac{x}{2} \in D$ et $\frac{x+1}{2} \in D$, puis montrer que

$$\cot\left(\frac{x}{2}\right) + \cot\left(\frac{x+1}{2}\right) = 2\cot x$$

5) À l'aide de l'égalité précédente, montrer par récurrence que pour tout $n \in \mathbb{N}$ on a :

$$\forall x \in D, \cot x = \frac{1}{2^n} \sum_{k=0}^{2^n - 1} \cot \left(\frac{x+k}{2^n} \right)$$